MODULATION OF CSF CASPASE-3 IN MSC-NTF CELLS (NUROWN®) IN A PHASE 2 ALS STUDY: CORRELATIONS WITH CSF BIOMARKERS AND CLINICAL RESPONSE

Revital Aricha¹, Haggai Kaspi¹, Merit Cudkowicz², James Berry², Anthony Windebank³, Nathan Staff³, Margaret Ayo Owegi⁴, Yossef S. Levy¹, Chaim Lebovits¹, Robert Brown⁴, Yael Gothelf¹, Ralph Kern¹

¹. BrainStorm Cell Therapeutics, Petach Tikva, Israel and New York, NY.
². Massachusetts General Hospital, Boston, MA.
³. Mayo Clinic, Rochester, MN.
⁴. UMass Medical School, Worcester, MA.

Dr. Ralph Kern is an employee of Brainstorm Cell Therapeutics.
Phase 2 Study: CSF Biomarkers and Responder Analysis

Study Design n=48 (3:1 randomization)

Screening

BMA

IT/IM Transplantation

CSF Collection (V5 and V6)

Week 0

Week 2

-3 to -5 weeks

~3-4 months

-12 to -16 weeks

~ 6 months

12 weeks

24 weeks

End of Study

Week 0

CSF Collection

(~6 months)

Week 2

~3-4 months

BMA

Screening

Week 0

CSF Collection

 (~6 months)

Week 2

CSF Biomarkers:

↓MCP-1

↑miR-132

↓Caspase 3

Responder analysis: 100% ALSFRS-R slope improvement

**}* p < 0.001

Responder analysis: 100%

ALSFRS-R

slope improvement

Weeks

% Responders

MSC-NTF ALL

MSC-NTF RP

Placebo ALL

Placebo RP

Placebo SP

MSC-NTF SP

Weeks

8

12

16

20

24

28

% Responders

8

12

16

20

24

28

**}* p < 0.001
2X Greater CSF Caspase 3 % reduction in responders compared to non-responders at 12 weeks post-transplantation*

*** p< 0.001

*Responder defined as ≥100% ALSFRS-R slope improvement at 12 weeks
NurOwn® (MSC-NTF cells) may tip the balance linking neuronal cell death and neuroinflammation.

Neuronal apoptosis activates neuroinflammation via NFκ-B.
MODULATION OF CSF CASPASE-3 IN MSC-NTF CELLS (NUROWN®) IN A PHASE 2 ALS STUDY: CORRELATIONS WITH CSF BIOMARKERS AND CLINICAL RESPONSE

Revital Aricha1, Haggai Kaspi1, Merit Cudkowicz2, James Berry2, Anthony Windebank3, Nathan Staff4, Margaret Ayo Owegi4, Yossif S. Levy1, Chaim Lebovits1, Robert Brown5, Yael Goltzef5, Ralph Kern1

Background

MSC-NTF cells (NurOwn®) are autologous bone-marrow derived mesenchymal stem cells (MSC) that secrete high levels of neurotrophic factors (NTFs) and immunomodulatory cytokines having a signature miRNAs profile. MSC-NTF cells were administered by the intrathecal (IT) route of administration to participants in a US Phase 2 ALS multicenter double-blind placebo-controlled trial to evaluate safety and efficacy (NCT02017912).

Objective

To measure CSF Caspase 3 levels pre- and post-single IT MSC-NTF cell transplantation and to correlate with clinical response and other CSF biomarkers.

Methods

CSF was collected prior to, and two weeks post-IT MSC-NTF cell transplantation. CSF Caspase-3, NTFs, cytokines and miRNAs were analyzed. Caspase-3 reduction was evaluated in responders (≥100% improvement in ALSFRS-R slope 12-weeks post transplantation) and non-responders. miR were analyzed in pooled CSF samples from responders, non-responders and placebo.

Results

Study Design n=48 (3:1 randomization)

Responder analysis: 100% ALSFRS-R slope improvement

The percentage of participants with a 100% improvement in their ALSFRS-R at the indicated time points in the treated (MSC-NTF) and the Placebo group total population (ALL), rapid progressors (RP) and slow progressors (SP).

Caspase-3 reduction was greater in responders compared to non-responders

Discussion

Decreased CSF Caspase-3 may reflect reduced neuronal apoptosis and serve as a biomarker for neuroprotection. While MSC-NTF cells may have anti-apoptotic effects through direct paracrine NTF mechanisms such as VEGF, it is possible that indirect effects may be mediated via immunomodulation and miR-132 secretion. Caspases are known to activate microglia via NF-kB signaling and miR-132 may regulate apoptotic genes. miR-132 appears to be lower in the CSF of sporadic ALS patients and TDP-43 is required for the biogenesis of miR-132. These findings support the combined immunomodulatory and neuroprotective mechanism of action of MSC-NTF cells through NTF, immunomodulatory and miRNA pathways.